Monday **1a**. Graph the shape that has coordinates A (-3, -2), B (2, 4), and C (-2, 3) Coordinates: A' _____ B' ____ C' ____ **b.** Dilate the original shape by a factor of $\bf 2$. 2^{nd} image Coordinates: A" ______ B" ____ c. Reflect the original shape over the x-axis. 3rd image Coordinates: A"' _____ B"' ____ C""____ **2.** Solve the system: y = 2x - 4 x + y = 5 (solve for y first!!) 3. | Original form | Factored form | Simplified exponent form | |--|---------------|--------------------------| | 20 ³ • 20 ⁴ | | | | (x ⁴ y ⁵) ³ | | | | $\frac{x^5y^4}{x^3y^6}$ | | | - **4.** Write these numbers using standard notation: **a.** 6.4×10^{-8} - **b.** 2.1112×10^7 ## Wednesday - **1.** Find the volume. Round to the nearest tenth. - a. cone with radius 5 cm and height 12 cm - b. sphere with radius 9 cm. - **2.** Graph the system. What is the solution? $$y = -\frac{1}{3}x + 5$$ $y = -\frac{1}{3}x - 2$ -0.8 3. Tell whether each number is rational or irrational: √<u>16</u> 124 23 4. Find the measures of angles 1, 2, 3, and 4. What can you call angles 4 and 3? What can you call angles 2 and 3?