\qquad
Date: \qquad
Period: \qquad

Tuesday:

1. Farmer John's neighbor, Old McDonald, has a cylindrical storage tank with a height of 12 ft . and radius of 3 ft . He has a machine that can dump the wheat in at $6 \mathrm{ft}^{3} / \mathrm{min}$. How long does it take to fill his tank? Give your answer both in terms of π, and an estimated answer using 3.14 for π. (hint: find the volume of the tank first!)
2. The local soccer league provided jerseys for its teams. The total cost of an order of jerseys from a company consists of the cost of each shirt plus a one-time design fee. To help customers estimate the total cost of an order, the company provided the following information:

20 shirts cost $\$ 220.00$
200 shirts cost $\$ 1210.00$
Write an equation for each of the cost examples and use your equations to answer the following questions: What is the cost of each shirt, not including the one-time design fee? What is the cost of the one-time design fee? Explain how you found your answers.
3. Given a right triangle, which set of numbers cannot be the lengths of the sides? Explain why you chose your answer.
A. $6,8,10$
B. $7,24,25$
C. $8,15,17$
D. $10,12,14$
4. Use the given numbers only once to form 2 true equations. You don't have to use all of the numbers given.
$3,5,9,25,27,125$

$\sqrt[3]{ }=$

Wednesday

1. Rotate the given figure 180° about the origin.

What are the coordinates of $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$?
What is the relationship of the 2 sets of coordinates?

2. When Jasper was doing his homework, he came across an equation that said $4 x+10=a x+b$. He found many sets of numbers for a, b, x that made the equation true. However, he only found one value for 'a' and one value for 'b' to make the solution set for x to be all real numbers. What did he find for the values of a and b to have infinite solutions for x ?
3. Simplify:
a. $3 x^{2}\left(4 x^{5}\right)$
b. $x^{3} y^{4} z \cdot x y^{2} z$
c. $\left(3 a^{2} b c^{3}\right)^{3}$
4. Solve:
a. $5 x-3=2 x+8$
b. $\frac{x}{8}+12=6$
c. $\frac{4}{x}=\frac{6}{12}$

Key

Tuesday:

1. $18 \pi \mathrm{~min} . \approx 56.52$ minutes.
2. Let $\mathrm{c}=$ the cost per shirt \& let $\mathrm{f}=$ the one-time fee

My equations are $20 c+f=220$ and $200 c+f=1210$. I solved this system by the elimination method by multiplying the first equation through by -1 and then adding it to the second equation. This allowed me to first solve for the cost per shirt which turned out to be $\$ 5.50$. I then went back to the first equation to solve for the design fee (f), which turned out to be $\$ 110$. I checked my solution of $(5.50,110)$ into each equation to make sure it made both statements true.
3. D If the triangle is a right triangle then $a^{2}+b^{2}=c^{2}$, yet here $10^{2}+12^{2} \neq 14^{2}$ because $244 \neq 196$, therefore the triangle cannot be a right triangle.
4. $\sqrt{ }=$ \qquad

$$
9=3 \text { or } 25=5
$$

$$
125=5 \text { or } 27=3
$$

Wednesday:

1. $A^{\prime}=(6,2) \quad B^{\prime}=(6,5) \quad C^{\prime}=(2,2) \quad D^{\prime}=(2,5)$

A 180° turn makes the coordinate points opposites.
2. $a=4$ and $b=10$ to make a true statement which gives a solution of all real numbers.

